Oxidative Stress–Related Molecular Biomarker Candidates for Glaucoma
نویسندگان
چکیده
Purpose Glaucoma-related molecular biomarkers can improve clinical testing to diagnose the disease early, predict its prognosis, and monitor treatment responses. Based on the evidence of increased oxidative stress in glaucomatous tissues, this study analyzed oxidative stress-related biomarker candidates in blood and aqueous humor samples with or without glaucoma. Methods The blood and aqueous humor samples collected from carefully selected groups of 96 patients with glaucoma and 64 healthy subjects without glaucoma were included in the study. The samples were analyzed for protein carbonyls and advanced glycation end products (AGEs) through ELISA-based quantification assays. To allow proper comparisons, the Goldmann-Witmer coefficient that reflects the ratio of aqueous humor to blood values corrected to total protein concentration in individual samples was calculated. Results Blood and aqueous humor levels of protein carbonyls and AGEs were found significantly higher in glaucomatous samples compared with age-matched nonglaucomatous controls (P < 0.001). The glaucoma-related increase in protein carbonyls and AGEs was more prominent in aqueous humor samples than blood samples (2.6-fold versus 1.9-fold for protein carbonyls, and 3.1-fold versus 1.9-fold for AGEs; P < 0.001). Comparison of the Goldmann-Witmer coefficients indicated greater values for protein carbonyls (1.37 ± 0.3 vs. 3.07 ± 0.8) and AGEs (1.2 ± 0.3 vs. 3.2 ± 1.1) in the glaucoma group (P < 0.001). Conclusions Findings of this study encourage further validation studies of oxidative stress-related biomarkers in glaucoma. Analysis of protein carbonyls and AGEs in longitudinal studies of larger and heterogeneous patient cohorts should better assess the value of these promising candidates as molecular biomarkers of glaucoma for clinical predictions.
منابع مشابه
Antioxidant Drug Therapy Approaches for Neuroprotection in Chronic Diseases of the Retina
The molecular pathways contributing to visual signal transduction in the retina generate a high energy demand that has functional and structural consequences such as vascularization and high metabolic rates contributing to oxidative stress. Multiple signaling cascades are involved to actively regulate the redox state of the retina. Age-related processes increase the oxidative load, resulting in...
متن کاملThe Evaluation of the Oxidative Stress Parameters in Patients with Primary Angle-Closure Glaucoma
OBJECTIVE To clarify the presence of oxidative stress in patients with primary angle-closure glaucoma (PACG) and to investigate the relationship between oxidative stress and PACG. METHODS Fifty patients with primary angle-closure glaucoma and fifty healthy controls of matched age and gender were included in the study prospectively. Serum samples were obtained to detect the oxidation degradati...
متن کاملα-Lipoic Acid Antioxidant Treatment Limits Glaucoma-Related Retinal Ganglion Cell Death and Dysfunction
Oxidative stress has been implicated in neurodegenerative diseases, including glaucoma. However, due to the lack of clinically relevant models and expense of long-term testing, few studies have modeled antioxidant therapy for prevention of neurodegeneration. We investigated the contribution of oxidative stress to the pathogenesis of glaucoma in the DBA/2J mouse model of glaucoma. Similar to oth...
متن کاملGlaucoma related Proteomic Alterations in Human Retina Samples
Glaucoma related proteomic changes have been documented in cell and animal models. However, proteomic studies investigating on human retina samples are still rare. In the present work, retina samples of glaucoma and non-glaucoma control donors have been examined by a state-of-the-art mass spectrometry (MS) workflow to uncover glaucoma related proteomic changes. More than 600 proteins could be i...
متن کاملGlutathione s-transferase M1 and T1 genetic polymorphisms in Iranian patients with glaucoma
Objective(s):Glaucoma is the second leading cause of blindness and it is related to oxidative stress based on numerous studies. Glutathione S-transferases (GSTs) are members of multigenic family, which have important role in cells as an antioxidant. In the present study, we examined the polymorphism of GSTT1 and GSTM1 deletion genotypes (T0M1, T1M0, and T0M0) in 100 Glaucoma patients (41with pr...
متن کامل